Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
نویسندگان
چکیده
In flowering plants, the accumulation of small deletions through unequal homologous recombination (UR) and illegitimate recombination (IR) is proposed to be the major process counteracting genome expansion, which is caused primarily by the periodic amplification of long terminal repeat retrotransposons (LTR-RTs). However, the full suite of evolutionary forces that govern the gain or loss of transposable elements (TEs) and their distribution within a genome remains unclear. Here, we investigated the distribution and structural variation of LTR-RTs in relation to the rates of local genetic recombination (GR) and gene densities in the rice (Oryza sativa) genome. Our data revealed a positive correlation between GR rates and gene densities and negative correlations between LTR-RT densities and both GR and gene densities. The data also indicate a tendency for LTR-RT elements and fragments to be shorter in regions with higher GR rates; the size reduction of LTR-RTs appears to be achieved primarily through solo LTR formation by UR. Comparison of indica and japonica rice revealed patterns and frequencies of LTR-RT gain and loss within different evolutionary timeframes. Different LTR-RT families exhibited variable distribution patterns and structural changes, but overall LTR-RT compositions and genes were organized according to the GR gradients of the genome. Further investigation of non-LTR-RTs and DNA transposons revealed a negative correlation between gene densities and the abundance of DNA transposons and a weak correlation between GR rates and the abundance of long interspersed nuclear elements (LINEs)/short interspersed nuclear elements (SINEs). Together, these observations suggest that GR and gene density play important roles in shaping the dynamic structure of the rice genome.
منابع مشابه
Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans.
We analyzed the distribution of transposable elements (TEs: transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of the nematode Caenorhabditis elegans. The density of transposons (DNA-based elements) along the chromosomes was found to be positively correlated with recombination rate, but this relationship was not observed for LTR or non-LTR retrotransposons (RNA-...
متن کاملGenome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean.
Preferential accumulation of transposable elements (TEs), particularly long terminal repeat retrotransposons (LTR-RTs), in recombination-suppressed pericentromeric regions seems to be a general pattern of TE distribution in flowering plants. However, whether such a pattern was formed primarily by preferential TE insertions into pericentromeric regions or by selection against TE insertions into ...
متن کاملRecombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.
We analyzed the distribution of 54 families of transposable elements (TEs; transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of Drosophila melanogaster, using data from the sequenced genome. The density of LTR and non-LTR retrotransposons (RNA-based elements) was high in regions with low recombination rates, but there was no clear tendency to parallel the recom...
متن کاملFormation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae.
Extrachromosomal circular DNA (eccDNA) derived from chromosomal Ty retrotransposons in yeast can be generated in multiple ways. Ty eccDNA can arise from the circularization of extrachromosomal linear DNA during the transpositional life cycle of retrotransposons, or from circularization of genomic Ty DNA. Circularization may happen through nonhomologous end-joining (NHEJ) of long terminal repeat...
متن کاملComparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear (Pyrus bretschneideri Rehd.)
Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 19 12 شماره
صفحات -
تاریخ انتشار 2009